Understanding Synoptic Controls on North American Pollutant Export using TES Observations

Jennifer Hegarty, Huiting Mao, and Robert Talbot

UNIVERSITY of NEW HAMPSHIRE

Scientific Questions

- What are the primary atmospheric circulation mechanisms in each season that determine the North American export of air pollutants?
- What are the spatial and temporal variations in tropospheric ozone (O₃) and its precursors over the North Atlantic that correspond to the various circulation scenarios?
- How does seasonal and interannual variability in circulation dynamics affect background O₃ levels over the North Atlantic?

Focus: Lower tropospheric O_3 and CO for eastern North America and adjacent North Atlantic for major circulation types during each season using retrievals from the Tropospheric Emission Spectrometer (TES).

Approach

- Use correlation-based synoptic classification scheme [Lund, 1963] to identify predominant circulation patterns or map types.
 - Details see Hegarty et al., [2007]
- Data Source:
 - NCEP Global Final Analysis at 1° x 1° horizontal resolution
 - 12 UTC sea level pressure (SLP) fields
- Time Period: 2000 2006

Synoptic classification results: Identified 4 -7 predominant map types for each season. Approximately 70% of patterns classifiable as one of the predominant types

For each map type created composite O_3 and CO analyses from 2005 – 2006 TES V002 L2 data.

DJF Map Types

JJA Map Types

SLP (contoured every 4 hPa)

Export Domains

MT: Map typing domain

S1 and S2: Sub-domains for calculating regional O₃ and CO correlations

O₃-CO DJF

JJA O₃ and CO at 681 hPa

JJA O₃-CO

MAM O₃ at 681 hPa

MAM CO at 681 hPa

MAM O₃ and CO at 681 hPa MT 3 and MT 7

MAM O₃-CO

Summary

- TES lower tropospheric O₃ and CO distributions over eastern North America and North Atlantic influenced by circulation dynamics.
- O₃ CO correlated positively downwind of troughs (weather systems) crossing east coast of U.S. indicates anthropogenic influence.

Ongoing and Future Work

- Examination of TES upper tropospheric O₃ and CO distributions
- Case study analysis utilizing TES special observation periods and IONS-06 network (July - August 2006)
 - Interpreting measurements using regional modeling tools (e.g. MM5-CMAQ)
- ICT potential of various circulation scenarios
 - GEOS-CHEM model